Chrome Extension
WeChat Mini Program
Use on ChatGLM

CEBPA phase separation links transcriptional activity and 3D chromatin hubs

Marie Christou-Kent, Sergi Cuartero, Carla Garcia-Cabau, Julia Ruehle, Julian Naderi, Julia Erber, Maria Victoria Neguembor, Marcos Plana-Carmona, Marc Alcoverro-Bertran, Luisa De Andres-Aguayo, Antonios Klonizakis, Eric Julia-Vilella, Cian Lynch, Manuel Serrano, Denes Hnisz, Xavier Salvatella, Thomas Graf, Gregoire Stik

CELL REPORTS(2023)

Cited 1|Views18
No score
Abstract
Cell identity is orchestrated through an interplay between transcription factor (TF) action and genome architecture. The mechanisms used by TFs to shape three-dimensional (3D) genome organization remain incompletely understood. Here we present evidence that the lineage-instructive TF CEBPA drives extensive chromatin compartment switching and promotes the formation of long-range chromatin hubs during induced B cell-to-macrophage transdifferentiation. Mechanistically, we find that the intrinsically disordered region (IDR) of CEBPA undergoes in vitro phase separation (PS) dependent on aromatic residues. Both overexpressing B cells and native CEBPA-expressing cell types such as primary granulocyte-macrophage progenitors, liver cells, and trophectoderm cells reveal nuclear CEBPA foci and long-range 3D chromatin hubs at CEBPA-bound regions. In short, we show that CEBPA can undergo PS through its IDR, which may underlie in vivo foci formation and suggest a potential role of PS in regulating CEBPA function.
More
Translated text
Key words
CP: Molecular biology
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined