Lithospheric loading model for large impact basin where mantle plug presents

arxiv(2023)

引用 1|浏览6
暂无评分
摘要
Lithosphere is an outer rigid part of the terrestrial body, usually consisting of the crust and part of the mantle. Characterizing the physical properties of the lithosphere is critical in investigating its evolution. By modeling mass-related loads within the lithosphere, physical parameters such as the elastic thickness of the lithosphere can be inferred from gravity and topography data. In the impact basin region, however, the low topography-gravity correlation and the sharp change in admittance from negative to positive within a narrow spheric harmonic degree make this model inapplicable. In this work, we incorporated mantle uplift structures commonly formed in impact basin regions into the lithospheric loading model. The crustal-mantle boundary of this mantle uplift structure is inferred from the global crustal thickness model. The gravity anomaly of the deflected lithosphere is calculated at the surface and crustal-mantle boundary, then the theoretical gravity admittance and correlation can be compared with the observed data. We sampled parameters using this mantle loading model at Argyre and Isidis basin on Mars with a novel crustal thickness model from the InSight mission. Our work suggests that proper modelling of the impact-induced load is critical to understanding the physical properties of the planetary lithosphere in the basin region.
更多
查看译文
关键词
lithospheric loading model,large impact basin,mantle
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要