Femtosecond laser welding for robust and low loss optical fiber bonding.

Optics Express(2022)

引用 2|浏览3
暂无评分
摘要
Driven by the increasing demand for faster high-performance computing (HPC) networks and higher data center fabric transmission bandwidth, to favorite the needs of machine learning, data training, and computing, the adoption of co-packaged optics (CPO) and near-packaged optics (NPO) is one of the innovations to mitigate the slowing down of Moore's law. Because of the high temperature generated by the next generation of high-speed chips like switch ASICs, CPUs, and GPUs, coupling fibers to photonic integrated circuit (PIC) with traditional epoxy-based fiber arrays is becoming more challenging and problematic. Therefore, an epoxy-free bonding method using femtosecond laser welding borosilicate glass 3.3 and optical fibers is proposed and demonstrated. Then, a low loss and polarization independent fiber to fiber coupling was demonstrated to show the reliability of bonding. In the experiment, a V groove is used for aligning and positioning two fibers. After welding, the minimum coupling loss and polarization dependent loss is 0.347 dB and below 0.1 dB respectively. The average shear force limit of the welded samples with 0.5 mm welding length is measured to be as high as ∼0.719 N. This technology could be used for epoxy-free based edge coupling the high density multi-fibers with PIC and has potential of scalable manufacturability through automation.
更多
查看译文
关键词
laser welding,optical fiber
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要