Chrome Extension
WeChat Mini Program
Use on ChatGLM

Publisher Correction: Parallel pathways for serotonin biosynthesis and metabolism in C. elegans

Jingfang Yu, Merly C. Vogt, Bennett W. Fox, Chester J. J. Wrobel, Diana Fajardo Palomino, Brian J. Curtis, Bingsen Zhang, Henry H. Le, Arnaud Tauffenberger, Oliver Hobert, Frank C. Schroeder

Nature Chemical Biology(2022)

Cited 1|Views2
No score
Abstract
The neurotransmitter serotonin plays a central role in animal behavior and physiology, and many of its functions are regulated via evolutionarily conserved biosynthesis and degradation pathways. Here we show that in Caenorhabditis elegans, serotonin is abundantly produced in nonneuronal tissues via phenylalanine hydroxylase, in addition to canonical biosynthesis via tryptophan hydroxylase in neurons. Combining CRISPR-Cas9 genome editing, comparative metabolomics and synthesis, we demonstrate that most serotonin in C. elegans is incorporated into N-acetylserotonin-derived glucosides, which are retained in the worm body and further modified via the carboxylesterase CEST-4. Expression patterns of CEST-4 suggest that serotonin or serotonin derivatives are transported between different tissues. Last, we show that bacterial indole production interacts with serotonin metabolism via CEST-4. Our results reveal a parallel pathway for serotonin biosynthesis in nonneuronal cell types and further indicate that serotonin-derived metabolites may serve distinct signaling functions and contribute to previously described serotonin-dependent phenotypes.
More
Translated text
Key words
serotonin biosynthesis,parallel pathways,metabolism
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined