Different acesulfame potassium fate and antibiotic resistance propagation pattern in nitrifying and denitrifying sludge systems

Science of The Total Environment(2023)

引用 1|浏览12
暂无评分
摘要
Acesulfame potassium (ACE-K) is a widely utilized sugar substitute with increasing demand, which is frequently detected in various environmental matrix due to recalcitrance. However, a general consensus on the contribution of nitrifying and denitrifying process to ACE-K removal is lacking. Therefore, ACE-K removal, its effects on antibiotic resistant genes (ARGs) propagation and microbial community in nitrifying sequencing batch reactor (N-SBR) and denitrifying sequencing batch reactor (D-SBR) inoculated with the identical activated sludge were investigated. In this study, ACE-K can be eliminated in N-SBR with satisfying removal efficiency (96.76 ± 8.33 %) after 13 d acclimation, while it remained persistent (average ACE-K removal efficiency of 2.24 ± 1.86 %) in D-SBR during 84 d exposure. Moreover, ACE-K hardly affected the performances of these two types of reactors and had little impact on nitrifying and denitrifying functional genes. However, initial contact with ACE-K would increase ARGs abundance, network analysis showed functional bacteria in each reactor were possible ARGs hosts. Potential ACE-K degrading genera Chelatococcus, Bosea and Aquamicrobium were found in both reactors. LefSe analysis showed that Phyllobacteriaceae containing Aquamicrobium genus was a differentially enriched family in N-SBR. This research might provide a perspective for better understanding factor affecting ACE-K fate in wastewater treatment process and its ecological risks.
更多
查看译文
关键词
Acesulfame potassium,Nitrifying and denitrifying sludge,Biodegradation,Antibiotic resistance genes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要