Chrome Extension
WeChat Mini Program
Use on ChatGLM

On the Problem of the Sea Ice Detection by Orbital Microwave Doppler Radar at the Nadir Sounding

REMOTE SENSING(2022)

Cited 0|Views10
No score
Abstract
Orbital radars are used to monitor the state of the sea ice in the Arctic and Antarctic. The backscattering radar cross section (RCS) is used to determine the type of scattering surface. The power of the reflected signal depends on many factors, so the problem of separating sea ice and sea waves is not always unambiguous. Previous research has shown that microwave Doppler radar installed on aircrafts can be used to determine the boundary of sea ice. The width of the Doppler spectrum for wide or knife-like antenna beam depends on the statistical parameters of the reflecting surface, so sea ice and sea waves are easily separated. However, when installing a Doppler radar on a satellite, the spatial resolution becomes extremely low. In this research, we discuss the possibility of improving the spatial resolution by dividing the antenna footprint into elementary scattering cells. To do this, it is proposed to use the original incoherent synthesis procedure, which allows one to determine the dependence of the RCS on the incidence angle for an elementary scattering cell. Numerical modeling was performed and processing of model data confirmed that sea ice and sea waves are separated. The coefficient of kurtosis was used as a criterion in the algorithm. In addition, for sea waves, it is possible to determine the mean square slopes (mss) of large-scale waves, compared to the electromagnetic wavelength of sea waves along the sounding direction.
More
Translated text
Key words
Doppler spectrum of the backscattered radar signal,sea ice,sea waves,knife-like antenna beam,kurtosis coefficient,retrieval algorithm
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined