Active spin lattice hyperpolarization: Application to hexagonal boron nitride color centers

arxiv(2022)

引用 0|浏览4
暂无评分
摘要
The active driving of the electron spin of a color center is known as a method for the hyperpolarization of the surrounding nuclear spin bath and to initialize a system with large number of spins. Here, we investigate the efficiency of this approach for various spin coupling schemes in a one-dimensional Heisenberg chain coupled to a central spin. To extend our study to the realistic systems with a large number of interacting spins, we employ an approximate method based on Holstein-Primakoff transformation. The validity of the method for describing spin polarization dynamics is benchmarked by the exact numerics for a small lattice, where the accuracy of the bosonic Holstein-Primakoff approximation approach is confirmed. We, thus, extend our analysis to larger spin systems where the exact numerics are out of reach. The results prove the efficiency of the active driving method when the central spin interaction with the spin bath is long range and the inter-spin interactions in the bath spins is large enough. The method is then applied to the realistic case of optically active negatively charged boron vacancy centers ($V_B$) in hexagonal boron nitride. Our results suggest that a high degree of hyperpolarization in the boron and nitrogen nuclear spin lattices is achievable even starting from a fully thermal bath. As an initialization, our work provides the first step toward the realization of a two-dimensional quantum simulator based on natural nuclear spins and it can prove useful for extending the coherence time of the $V_B$ centers.
更多
查看译文
关键词
active spin lattice hyperpolarization,hexagonal boron,boron nitride
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要