Triphenylamine-based highly active two-photon absorbing chromophores with push-pull systems

Chinese Chemical Letters(2022)

Cited 2|Views2
No score
Abstract
Two triphenylamine-based star-type push-pull chromophores (T1, T2) were designed and synthesized. Triphenylamine serves as the central core and acts as an electron-donating group surrounded by electron-withdrawing pentafluorobenzene or N,N-dimethyl substituted tetrafluorobenzene, which are connected by ethylene bridges. Single-crystal X-ray diffraction confirmed the structures and molecular arrangement of two chromophores. The systematic photophysical research of T1 and T2 absorption characteristics was carried out to gain a better understanding of how structure-property relationships affect the observed nonlinear optical absorption phenomenon. Complementary calculations based on density functional theory (DFT) further confirmed the experimental results. Both chromophores exhibited excellent two-photon absorption (TPA) properties in CH2Cl2. Notably, T2 has more remarkable nonlinear optical absorption effects with the TPA cross-section up to 4.24 × 107 GM. By adjusting the electronic structures of the chromophores through introducing pentafluorobenzene or N,N-dimethyl as functional groups with different electron-donating or withdrawing behaviors, the TPA performance of the small organic molecule could be greatly enhanced. These molecular structures with push-pull systems were excellent candidates for different two-photon applications.
More
Translated text
Key words
Star-type chromophores, Triphenylamine derivatives, Two-photon absorption, Nonlinear optical materials, Push-pull systems
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined