谷歌Chrome浏览器插件
订阅小程序
在清言上使用

2022: An Unprecedentedly Rainy Early Summer in Northeast China

Atmosphere(2022)

引用 2|浏览2
暂无评分
摘要
In the early summer (June) of 2022, the spatial mean precipitation in northeast China (NEC) was 62% higher than normal and broke the historical record since 1951. Based on the precipitation data of 245 meteorological stations in NEC and the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis, this paper analyzes the role of large-scale circulation and sea-surface temperature (SST) associated with anomalous precipitation over NEC in June using singular value decomposition (SVD), correlation analysis, regression analysis, and composite analysis methods, and further investigates the possible cause of the abnormal precipitation in June 2022. Results show that the northeast China cold vortex (NCCV) accompanying the blocking high in the Okhotsk Sea (BHOS) has been the primary mid-to-high latitude atmospheric circulation pattern affecting NEC precipitation in June since 2001. This circulation pattern is closely related to the tripole SST pattern over the North Atlantic (NAT) in March. In June 2022, the NAT SST anomaly in March stimulates eastward-propagating wave energy, resulting in the downstream anomalous circulation pattern in which the NCCV cooperates with the BHOS in the mid-high latitudes of East Asia. Under this background atmospheric circulation favorable for precipitation, the Kuroshio region SST anomaly in June led to a more northward and stronger anomalous anticyclone in the northwestern Pacific through local air–sea interaction, which provides more sufficient water vapor for NEC, resulting in unprecedented precipitation in June 2022.
更多
查看译文
关键词
early summer precipitation, Northeast China, North Atlantic SST tripole, Kuroshio SST anomaly
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要