Evaluation of optical transmission across the ITER hard x-ray monitor system designed for the first plasma scenarios

Review of Scientific Instruments(2022)

引用 1|浏览8
暂无评分
摘要
Hard x-ray (HXR) spectroscopy is applied for diagnostics of runaway electrons in nuclear fusion reactors. The scintillation counter is one of the most commonly used types of detectors for HXR spectroscopy. It consists of a detector that emits light when excited by HXR radiation (scintillator) directly coupled to a PMT (Photomultiplier Tube) that converts light pulses into an electrical signal. This type of detector is commonly used in existing tokamaks, such as Joint European Torus (JET), Experimental Advanced Superconducting Tokamak (EAST), Compact Assembly (COMPASS), and Axially Symmetric Divertor Experiment (ASDEX-U). In all these cases, the scintillator is directly coupled to the PMT to provide the best possible light transmission efficiency. The Hard X-ray Monitor (HXRM) is one among the first plasma diagnostic systems at ITER that provides information about the energy distribution of runaway electrons inside a tokamak by HXR spectroscopy. This system also uses a scintillator and a PMT as a detector. Due to the heavy shielding of the blanket modules, vacuum vessel, and port-plugs, it is not possible to assemble the scintillator outside the tokamak vacuum vessel. The PMT detector cannot be installed in the close vicinity of the tokamak due to either the significant magnetic field or temperature. A possible solution is to decouple the scintillator from the PMT and place the PMT inside the port-cell. Light pulses will be transmitted to the PMT via a 12 m long optical fiber bundle. Evaluation of the optical transmission was carried out to assess the performance of the HXR monitor and verify possible problems related to the PMT pulse discrimination under low light conditions.
更多
查看译文
关键词
optical transmission,first plasma scenarios,x-ray
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要