CNTF induces Clcf1 in astrocytes to promote the differentiation of oligodendrocyte precursor cells

Song Ji-wei, Liu Zi-ying,Tao Xiang,Yu Yang,Zhao Ju-fen,Zhang Qing-hua

Biochemical and Biophysical Research Communications(2022)

Cited 1|Views4
No score
Abstract
NSCs play an essential role in the regeneration process of the central nervous system. However, due to the influence of the harsh pathological microenvironment, the viability of neural stem cells is limited, and the therapeutic effect needs improvement. Previous studies have found that stem cells overexpressing ciliary neurotrophic factor (CNTF) have apparent therapeutic effects on remyelination, but the specific mechanism of action still needs to be further explored. We found that astrocytes, the most numerous groups in the CNS, exhibited a pathological role in the experimental autoimmune encephalomyelitis model, but after stimulation with CNTF-NSCs, a phenotypic switch occurred and induced the neurotrophic factor cardiotrophin-like cytokine 1 (Clcf1) production. Mechanistically, Clcf1 can significantly promote the differentiation of oligodendrocyte precursor cells (OPCs), and the advanced effect can attenuate by the Clcf1 antibody. Therefore, this study was conducted to investigate the pathway by which CNTF-NSCs exert their therapeutic effects by affecting astrocytes. It is expected to identify a potential therapeutic factor, Clcf1, for the treatment of demyelinating diseases.
More
Translated text
Key words
EAE,CNTF,OPCs,CLCF1,Differentiation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined