Crystal Plane Impact of ZnFe2O4-Ag Nanoparticles Influencing Photocatalytical and Antibacterial Properties: Experimental and Theoretical Studies

Carlos Alberto Huerta-Aguilar, Zarick Juliana Diaz-Puerto, Eduardo Daniel Tecuapa-Flores,Pandiyan Thangarasu

ACS OMEGA(2022)

引用 9|浏览4
暂无评分
摘要
This paper describes the crystal interphase impact of ZnFe2O4-Ag in the photodegradation of Rhodamine B. Prepared ZnFe2O4 nanoparticles (NPs) were deposited with Ag NPs to offer ZnFe2O4-Ag (0-2.5%). An X-ray diffraction peak corresponding to the Ag NPs was detected if the particle content reached about 2.0%, observing multiple crystalline interphases in HR-TEM. Magnetic saturation (Ms) was increased similar to 160% times for ZnFe2O4-Ag (7.25 to 18.71 emu/g) and ZnFe2O4 (9.62 to 25.09 emu/g) if the temperature is lowered from 298 to 5.0 K; while for Fe3O4 (91.09 to 96.19 emu/g), the Ms increment was just about 5.6%. After analyzing the DFT-Density of State, a decrease of bandgap energy for ZnFe2O4-Ag-6 from the influence of the size of Ag cluster was seen. Quantum yield (phi) was 0.60 for ZnFe2O4, 0.25 for ZnFe2O4-Ag (1.0%), 0.70 for ZnFe2O4-Ag (1.5%), 0.66 for ZnFe2O4-Ag (2.0%), and 0.66 for ZnFe2O4-Ag (2.5%), showing that the disposition of Ag NPs (1.5-2.5%) increases the phi to > 0.60. The samples were used to photo-oxidize RhB under visible light assisted by photopowered Langmuir adsorption. The degradation follows first-order kinetics (k = 5.5 x 10(-3) min(-1)), resulting in a greater k = 2.0 x 10(-3) min(-1) for ZnFe2O4-Ag than for ZnFe2O4 (or Fe3O4, k = 1.1 x 10(-3) min(-1)). DFT-total energy was used to analyze the intermediates formed from the RhB oxidation. Finally, the ZnFe2O4-Ag exhibits good antibacterial behavior because of the presence of Zn and the Ag components.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要