Plant rhizosphere defense system respond differently to emerging polyfluoroalkyl substances F-53B and PFOS stress

Journal of Hazardous Materials(2023)

Cited 2|Views20
No score
Abstract
Chlorinated polyfluoroalkyl ether sulfonate (F-53B) and perfluorooctanesulfonate (PFOS) are used and emitted as fog inhibitors in the chromium plating industry, and they are widely detected worldwide. To study the effects of F-53B and PFOS on the rhizosphere defense system, they were added at two levels (0.1 and 50 mg L−1) to the soil where different plants (Lythrum salicaria and Phragmites communis) were grown. In bulk soils, high concentrations of F-53B/PFOS resulted in significant increases in soil pH, NH4+-N, and NO3--N (the effect of PFOS on NO3--N was not significant). Moreover, the extent of the effects of PFOS and F-53B on the physicochemical properties of bulk soils were different (e.g., PFOS caused an increase of NH4+-N by 8.94%−45.97% compared to 1.63%−25.20% for F-53B). Root exudates and PFASs together influenced the physicochemical properties of rhizosphere soils (e.g., TOC increased significantly in contaminated rhizosphere soils but did not change in non-bulk soils). Under the influence of F-53B/PFOS, the root exudates regulated by plants were changed and weakened the effect of F-53B/PFOS on microbial community of rhizosphere soil. The rhizosphere defense systems of different plants have both similarities and differences in response to different substances and concentrations.
More
Translated text
Key words
Perfluorooctanesulfonate,Chlorinated polyfluoroalkyl ether sulfonate,Microbial community,Root exudate,Partial least squares pathway model
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined