CoN4-supported Co2N metal clusters for developing sensitive chemiluminescent immunochromatographic assays

Analytica Chimica Acta(2022)

Cited 7|Views1
No score
Abstract
In view of the optimal catalytic efficiency (-100%), single-atom site catalysts are being widely exploited in a range of areas including organic synthesis, energy conversion, environmental remediation, biotherapy, etc. However, low loading ratio of the unitary active sites on single-atom site catalysts dramatically hinders the remarkable improvement of their catalytic activity. Hereby, a facile low-temperature reduction protocol was adopted for synthesizing CoN4-supported Co2N metal clusters on graphitic carbon nitride, which show the remarkably superior chemiluminescent (CL) catalytic capacity than some reported pure single-atom site cata-lysts. Nitrogen-encapsulated Co2N clusters coupled with isolated Co-N4 moieties (Co2N@Co-N4) endowed the synergetic catalysts with high Co content of 53.2 wt%. Through X-ray absorption spectroscopy, the synergetic active sites (Co2N@Co-N4) afforded the CoN4-supported Co2N clusters with the remarkable catalytic activity for accelerating the decomposition of H2O2 to produce extensive superoxide radical anion rather than singlet oxygen or hydroxyl radical. Therefore, the CoN4-supported Co2N clusters possessed the superb enhancement effect on luminol-H2O2 CL reaction by-22829 times. The CoN4-supported Co2N clusters were utilized as signal probes to establish a CL immunochromatographic assay (ICA) platform for quantitating mycotoxins. Herein, aflatoxin B1 was employed as a mode analyte and the limit of detection was as low as 0.33 pg mL-1 (3 sigma). As a proof-of -principle work, the developed ICA protocol was successfully employed on the detection of aflatoxin B1 spiked in Angelica dahurica and Ganoderma lucidum with acceptable recoveries of 84.0-107.0%. The ideal practicability of the work elucidates that CoN4-supported Co2N clusters showed a new perspective for developing the sensitive CL biosensing.
More
Translated text
Key words
CoN4-supportedCo2N clusters, Synergetic catalysts, Chemiluminescence enhancement, Fenton-like activity, Immunochromatographic assays
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined