Optimization of operating parameters for methane steam reforming thermochemical process using Response Surface Methodology

International Journal of Hydrogen Energy(2022)

Cited 9|Views13
No score
Abstract
The methane steam reforming to produce hydrogen under concentrated irradiation was proposed and the novel thermodynamic analysis interaction effects on the conversion of methane via Design Expert software was utilized in this paper. The four parameters (material porosity, inlet gas temperature, steam-to-methane ratio, inlet gas velocity) and three levels (low, center and high) were designed via the Box-Behnken Design in Response Surface Methodology. The response model was established to optimize and analyze the condition parameters, which showed effects on the methane conversion under concentrated irradiation. The results showed that the value of material porosity, inlet gas temperature and S/C had a positive effect on the methane conversion rate, while the value of inlet gas velocity had a negative effect on it. The analysis of variance of the methane conversion in the Response Surface Methodology was 0.9914. When the material porosity, gas inlet temperature, S/C and gas inlet velocity were 0.770, 579.925 K, 2.996 and 0.031, respectively, methane conversion was 94.03%; Among the above four factors, material porosity had the most significant effect on the reaction of methane steam reforming to produce hydrogen under concentrated irradiation. These results provided theoretical guidance for application of methane steam reforming under concentrated irradiation.
More
Translated text
Key words
Concentrated irradiation,Methane steam reforming,Thermodynamic calculation,Parameter optimization
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined