Chrome Extension
WeChat Mini Program
Use on ChatGLM

Direct numerical simulation of compressible turbulence accelerated by graphics processing unit: An open-source high accuracy accelerated computational fluid dynamic software

PHYSICS OF FLUIDS(2022)

Cited 7|Views1
No score
Abstract
This paper introduces open-source computational fluid dynamics software named open computational fluid dynamic code for scientific computation with graphics processing unit (GPU) system (OpenCFD-SCU), developed by the authors for direct numerical simulation of compressible wall-bounded turbulence. This software is based on the finite difference method and is accelerated by the use of a GPU, which provides an acceleration by a factor of more than 200 compared with central processing unit (CPU) software based on the same algorithm and a number of Message Passing Interface processes, and the running speed of OpenCFD-SCU with just 512 GPUs exceeds that of CPU software with 130 000 CPUs. GPU-Stream technology is used to implement overlap of computing and communication, achieving 98.7% parallel weak scalability with 24 576 GPUs. The software includes a variety of high-precision finite difference schemes and supports a hybrid finite difference scheme, enabling it to provide both robustness and high precision when simulating complex supersonic and hypersonic flows. When used with the wide range of supercomputers currently available, the software should be able to improve the performance of large-scale simulations by up to two orders on the computational scale. Then, OpenCFD-SCU is applied to a validation and verification case of a Mach 2.9 compression ramp with mesh numbers up to 31.2 x 10(9). Published under an exclusive license by AIP Publishing.
More
Translated text
Key words
compressible turbulence,numerical simulation,graphics processing unit,open-source
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined