Time-varying baseline error correction method for ground-based micro-deformation monitoring radar

Journal of Systems Engineering and Electronics(2022)

Cited 0|Views6
No score
Abstract
In recent years, ground-based micro-deformation monitoring radar has attracted much attention due to its excellent monitoring capability. By controlling the repeated campaigns of the radar antenna on a fixed track, ground-based micro-deformation monitoring radar can accomplish repeat-pass interferometry without a space baseline and thus obtain high-precision deformation data of a large scene at one time. However, it is difficult to guarantee absolute stable installation position in every campaign. If the installation position is unstable, the stability of the radar track will be affected randomly, resulting in time-varying baseline error. In this study, a correction method for this error is developed by analyzing the error distribution law while the spatial baseline is unknown. In practice, the error data are first identified by frequency components, then the data of each one-dimensional array (in azimuth direction or range direction) are grouped based on numerical distribution period, and finally the error is corrected by the nonlinear model established with each group. This method is verified with measured data from a slope in southern China, and the results show that the method can effectively correct the time-varying baseline error caused by rail instability and effectively improve the monitoring data accuracy of ground-based micro-deformation radar in short term and long term.
More
Translated text
Key words
ground-based micro-deformation monitoring radar,deformation monitoring,time-varying baseline,error compensation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined