Effects of Brain-Computer Interface and Classical Motor Imagery for Upper Limb Impairment After Stroke: A Case Report

Intelligent Robotics and Applications(2022)

引用 0|浏览8
暂无评分
摘要
Background. There still exists limitations in the recovery of severe upper limb impairment after stroke, and brain computer interface maybe a hopeful therapy. Methods. A 76-year-old male hemiplegic patient with severe paretic upper limb was admitted. In the first four weeks, 20 sessions classic motor imagery was added in addition to routine treatments. Then, 20 sessions brain-computer interface training was added over the next four weeks. Behavioral characteristics, neuroelectrophysiology and neuroimaging were assessed at multiple time, such as the Fugl­Meyer Assessment Upper Extremity, the Motor Status Scale (MSS), the Action Research Arm Test (ARAT), Active range of motion of the paretic wrist and Modified Barthel Index (MBI). Functional magnetic resonance imaging (fMRI) was used to investigate the effect of the above interventions on the recovery of brain and its structural plasticity. Results. The patient's upper limb motor function improved after two different therapy interventions, however, the efficacy of BCI training was more obvious: after classic motor imagery, the paretic wrist could actively flex, but extension is still irrealizable. However, after BCI training, the paretic wrist was able to extend proactively. The fMRI findings revealed positive and dynamic changes on brain structure and function. Conclusion. BCI training could effectively promote the movement recovery after stroke than traditional motor imagery even if they showed apparent initial paralysis. An association between functional improvement and brain structure remodeling was observed. These findings serve as a conceptual investigations to encourage further relevant research.
更多
查看译文
关键词
Brain-computer interface, Motor imagery, Chronic stroke, Brain plasticity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要