Luminescent fac -[ReX(CO) 3 (phenyl-pyta)] (X = Cl, Br, I) complexes: influence of the halide ligand on the electronic properties in solution and in the solid state

Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology(2022)

引用 3|浏览8
暂无评分
摘要
Tricarbonylrhenium(I) complexes that incorporate a chloride ligand are promising photoluminescent materials, but those incorporating a bromide or iodide ligand have received very little attention regarding their solid-state properties. In this work, three rhenium(I) complexes differing only by the nature of their halide ligand (X = Cl, Br, and I) were compared. They are based on a fac -[ReX(CO) 3 (N^N)] framework where the N^N bidentate ligand is a 3-(2-pyridyl)-1,2,4-triazole unit functionalized by an appended phenyl group. DFT calculations showed that the character of the lowest energy transitions progressively changes from Re → N^N ligand (MLCT) to X → N^N ligand (XLCT) when increasing the size of the halogen atom. Regarding the electrochemical behavior, the chloride and bromide complexes 1-Cl and 1-Br were similar, while the iodide complex 1-I exhibited a strikingly different electrochemical signature in oxidation. From a spectroscopic viewpoint, all three complexes emitted weak red–orange phosphorescence in dichloromethane solution. However, in the solid state, marked differences appeared. Not only was 1-Cl a good emitter of yellow light, but it had strong solid-state luminescence enhancement (SLE) properties. In comparison, 1-Br and 1-I were less emissive and they showed better mechanoresponsive luminescence (MRL) properties, probably related to a loose molecular arrangement in the crystal packing and to the opening of vibrational non-radiative deactivation pathways. This study highlights for the first time how the nature of the halide ligand in this type of complex allows fine tuning of the solid-state optical properties, for potential applications either in bio-imaging or in the field of MRL-active materials. Graphical abstract
更多
查看译文
关键词
Crystal,DFT,Electrochemistry,Halogen,Photoluminescence,Rhenium
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要