Generation of Supersaturated Total Dissolved Gases from Low-Level Outlets at Hydropower Facilities

Journal of Hydraulic Engineering(2022)

引用 3|浏览4
暂无评分
摘要
Supersaturated total dissolved gases (TDGs) generated by dams can cause gas bubble trauma and mortality in fish in downstream waters. In this study, we evaluated air entrainment and generation of supersaturated TDG at two submerged low-level outlets (LLOs) at Hugh L. Keenleyside Dam, British Columbia, Canada. Specifically, we determined how air entrainment (less than 1% volume fraction) through the gate well, discharge level through the outlets, and geometry of the stilling basins at the south and north ends of the dam influenced supersaturated TDG generation. A mathematical formulation was developed, incorporating physical processes including air entrainment, bubble breakup, and gas transfer. Numerical modeling was also adopted to validate turbulence and flowfield downstream of the submerged low-level outlets. Despite being 8-m shallower, significantly higher TDG levels were measured in the stilling basin of the south LLO (about 120%) compared to that of the north LLO (<= 110%). Results show that turbulence in the stilling basin can produce smaller bubbles and increase the mass transfer coefficient across bubbles, which will substantially enhance gas transfer and TDG generation. Higher TDG generated in the shallower LLO was therefore attributed to the water depth generating stronger turbulence flow, with more efficient gas transfer. This study improves TDG prediction and helps inform the development of operational alternatives during periods of high TDG generation to mitigate impacts on the aquatic environment. (C) 2022 American Society of Civil Engineers.
更多
查看译文
关键词
Air entrainment, Bubble size, Energy dissipation, Hydropower, Low-level outlet (LLO), Mass transfer, Stilling basin, Total dissolved gas (TDG)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要