Chrome Extension
WeChat Mini Program
Use on ChatGLM

Clustering rooting for the high heat resistance of some CHNO energetic materials

FirePhysChem(2021)

Cited 12|Views11
No score
Abstract
Highly thermostable energetic materials (EMs) are highly desired for deep underground and space exploration, and therefore have attracted much attention. This work employs four typical traditional EMs composed of C, H, N and O atoms as example to clarify the origin of high heat resistance, by means of molecular dynamics simulations with the molecular reactive forcefield of ReaxFF. These EMs include 3,5-dinitro-N,N´-bis(2,4,6-trinitrophenyl)pyridine-2,6-diamine (PYX), 1,3,5-diamino-2,4,6-trinitrobenzene (TATB) and 2,2´,4,4´,6,6´-hexanitrostilbene (HNS), which are highly thermostable with decomposition temperature peaks > 600 K, and a less one of pentaerythritol tetranitrate (PETN) for comparison. It is found that the clustering in the decomposition of PYX, TATB and HNS retards the extraction of small product molecules from clusters, as well as heat release, and thereby roots for their high heat resistance; while, the clustering in the PETN decay is negligible and heat release and fragmentation proceed rapidly, facilitating to fast decomposition. Combining this finding with the well-known molecular stability, this work presents a perspective on the high heat resistance of traditional EMs. Based on it, a highly negative oxygen balance, a high C content and a high molecular stability are proposed as a strategy for designing and constructing new highly heat-resistant EMs.
More
Translated text
Key words
High heat resistance,Molecular dynamics simulations,Molecular stability,Cluster
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined