Enhancing Strain-Sensing Properties of the Conductive Hydrogel by Introducing PVDF-TrFE

ACS APPLIED MATERIALS & INTERFACES(2022)

引用 11|浏览16
暂无评分
摘要
Conductive hydrogels have attracted attention because of their wide application in wearable devices. However, it is still a challenge to achieve conductive hydrogels with high sensitivity and wide frequency band response for smart wearable strain sensors. Here, we report a composite hydrogel with piezoresistive and piezoelectric sensing for flexible strain sensors. The composite hydrogel consists of cross-linked chitosan quaternary ammonium salt (CHACC) as the hydrogel matrix, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT: PSS) as the conductive filler, and poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) as the piezoelectric filler. A one-pot thermoforming and solution exchange method was used to synthesize the CHACC/PEDOT: PSS/PVDF-TrFE hydrogel. The hydrogel-based strain sensor exhibits very high sensitivity (GF: 19.3), fast response (response time: 63.2 ms), and wide frequency range (response frequency: 5-25 Hz), while maintaining excellent mechanical properties (elongation at break up to 293%). It can be concluded that enhanced strain-sensing properties of the hydrogel are contributed to both greater change in the relative resistance under stress and wider response to dynamic and static stimulus by adding PVDF-TrFE. This has a broad application in monitoring human motion, detecting subtle movements, and identifying object contours and a hydrogel-based array sensor. This work provides an insight into the design of composite hydrogels based on piezoelectric and piezoresistive sensing with applications for wearable sensors.
更多
查看译文
关键词
composite hydrogels,piezoresistive and piezoelectric sensation,high sensitivity,fast response,wearable sensors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要