Metronidazole Degradation by UV and UV/H2O2 Advanced Oxidation Processes: Kinetics, Mechanisms, and Effects of Natural Water Matrices

International Journal of Environmental Research and Public Health(2022)

Cited 13|Views4
No score
Abstract
Advanced oxidation technology represented by hydroxyl radicals has great potential to remove residual antibiotics. In this study, we systematically compared the metronidazole (MTZ) degradation behavior and mechanism in the UV and UV/H2O2 systems at pH 3.00 condition. The results show that the initial reaction rates were 0.147 and 1.47 µM min−1 in the UV and UV/H2O2 systems, respectively. The main reason for the slow direct photolysis of MTZ is the relatively low molar absorption coefficient (2645.44 M−1 cm−1) and quantum yield (5.9 × 10−3 mol Einstein−1). Then, we measured as 2.79 (±0.12) × 109 M‒1 s‒1 by competitive kinetics, and calculated and as 2.43 (±0.11) × 109 M‒1 s‒1 and 2.36 × 10−13 M by establishing a kinetic model based on the steady-state hypothesis in our UV/H2O2 system. The contribution of direct photolysis and •OH to the MTZ degradation was 9.9% and 90.1%. •OH plays a major role in the MTZ degradation, and •OH was the main active material in the UV/H2O2 system. This result was also confirmed by MTZ degradation and radicals’ identification experiments. MTZ degradation increases with H2O2 dosage, but excessive H2O2 had the opposite effect. A complex matrix has influence on MTZ degradation. Organic matter could inhibit the degradation of MTZ, and the quenching of the radical was the main reason. promoted the MTZ degradation, while and Cl− had no effect. These results are of fundamental and practical importance in understanding the MTZ degradation, and to help select preferred processes for the optimal removal of antibiotics in natural water bodies, such as rivers, lakes, and groundwater
More
Translated text
Key words
hydroxyl radical, metronidazole, antibiotic, steady-state kinetic model, complex matrix
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined