Risk modeling of femoral neck fracture based on geometric parameters of the proximal epiphysis

Anna D. Shitova,Olga N. Kovaleva, Anna Olsufieva, Inchekhanum A. Gadzhimuradova, Dmitry D. Zubkov, Mikhail O. Kniazev,Tatyana S. Zharikova,Yury O. Zharikov

WORLD JOURNAL OF ORTHOPEDICS(2022)

引用 1|浏览3
暂无评分
摘要
BACKGROUND Fractures of the proximal femur epiphysis are problematic for state health care because they are associated with severe medical and social problems and high morbidity and mortality rates. AIM To model the potential risk of hip fracture via femur geometric parameters. METHODS Seventy educational cadaveric femurs from people aged 14 to 80 years, 10 X-ray images from the records of the Human Anatomy Department and 10 X-ray images from the Department of Traumatology, Orthopedics and Disaster Surgery of Sechenov University, were evaluated. The parameters of the fractured bone were measured using images captured with a Canon d60 camera. The projection values of the proximal epiphysis of the cadaveric femurs and geometric parameters of the bones shown in the X-ray images were measured with Autodesk software (AutoCAD 2018). Analysis of the video frames showing bone rotation reveal that the greater trochanter can be inscribed in a parallelepiped, where one of the faces is parallel to the plane of view in the frontal standard projection and is rectangular. The angle of bone rotation obtained by turning the cube corresponded to the angle measured with the second technique. This reliable method of calculating the rotation of the bone relative to the anterior projection was employed in subsequent calculations. The geometric parameters of the femur were measured using X-ray images according to the proposed method. RESULTS The geometric parameters of 70 femurs were analyzed, and correlation coefficients were calculated. Our measurement results were compared with those reported by other authors. The potential influence of femur geometry on force distribution in the proximal epiphysis of the femur was described, and a 2-dimensional model of the femur epiphysis associated with minimal neck fracture risk was provided. The assessment of the geometric parameters of the femoral epiphysis indicated the greatest risk of a varus fracture of the neck if the angle of the minimal resistance zone (AMRZ) index > 24 degrees and the neck-shaft angle (NSA) < 127.5 degrees. In contrast, the minimum risk was observed at AMRZ < 14 degrees and NSA > 128.87 degrees. CONCLUSION The proposed method provides the potential femur neck fracture risk based on geometric parameters.
更多
查看译文
关键词
Fracture,Proximal epiphysis of femur,Risk,Traumatology,Hip neck,Risk assessment scale
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要