谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Shear-layer dynamics at the interface of parallel Couette flows

PHYSICS OF FLUIDS(2022)

引用 0|浏览7
暂无评分
摘要
This article aims to make a detailed analysis of co-flowing plane Couette flows. Particularly, the variation of flow quantities from the turbulent to non-turbulent region is studied. While the enstrophy exhibits a sharp jump, the other quantities (e.g., mean velocity, Reynolds normal stress, and kinetic energy) show a continuous variation across the interface. The budget analysis of Reynolds normal stresses reveals that the terms playing a key role in turbulence transportation vary depending on the Reynolds normal stress under study. The terms production, diffusion, and redistribution play an important role in streamwise Reynolds stress ( u ' u ' over bar ). In the spanwise Reynolds stress ( v ' v ' over bar ), the diffusion terms play a significant role. In the wall-normal Reynolds stress ( w ' w ' over bar ), only the redistribution term is significant. The influence of one flow over another in the co-flow state was observed through the additional mean velocity and Reynolds normal stress found in the system compared to a standard plane Couette flow (pCf). Comparing the co-flow system with a conventional pCf system, the former exhibits greater vorticity, vortex stretching, and kinetic energy. A detailed analysis on the geometry and topology of flow structures was studied using flow invariants. Published under an exclusive license by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要