Chrome Extension
WeChat Mini Program
Use on ChatGLM

Turbulent flame speed and morphology of pure ammonia flames and blends with methane or hydrogen

Proceedings of the Combustion Institute(2022)

Cited 5|Views9
No score
Abstract
Ammonia appears a promising hydrogen-energy carrier as well as a carbon-free fuel. However, there remain limited studies for ammonia combustion especially under turbulent conditions. To that end, using the spherically expanding flame configuration, the turbulent flame speeds of stoichiometric ammonia/air, ammonia/methane and ammonia/hydrogen were examined. The composition of blends studied are currently being investigated for gas turbine application and are evaluated at various turbulent intensities, covering different kinds of turbulent combustion regimes. Mie-scattering tomography was employed facilitating flame structure analysis. Results show that the flame propagation speed of ammonia/air increases exponentially with increasing hydrogen amount. It is less pronounced with increasing methane addition, analogous to the behavior displayed in the laminar regime. The turbulent to laminar flame speed ratio increases with turbulence intensity. However, smallest gains were observed at highest hydrogen content, presumably due to differences in the combustion regime, with the mixture located within the corrugated flamelet zone, with all other mixtures positioned within the thin reaction zone. A good correlation of the turbulent velocity based on the Karlovitz and Damköhler numbers is observable with the present dataset, as well as previous experimental measurements available in literature, suggesting that ammonia-based fuels may potentially be described following the usual turbulent combustion models. Flame morphology and stretch sensitivity analysis were conducted, revealing that flame curvature remains relatively similar for pure ammonia and ammonia-based mixtures. The wrinkling ratio is found to increase with both increasing ammonia fraction and turbulent intensity, in good agreement with measured increases in turbulent flame speed. On the other hand, in most cases, the flame stretch effect does not change significantly with increasing turbulence, whilst following a similar trend to that of the laminar Markstein length.
More
Translated text
Key words
pure ammonia flames,turbulent flame speed,methane,hydrogen
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined