Photoinduced CO2 and N2 reductions on plasmonically enabled gallium oxide

JOURNAL OF COLLOID AND INTERFACE SCIENCE(2023)

引用 0|浏览6
暂无评分
摘要
Ag-containing ZnO/ b-Ga2O3 semiconductor, which exhibit reduced bandgap, increased light absorption, and hydrophilicity, have been found to be useful for photocatalytic CO2 reduction and N2 fixation by water. The charge-separation is facilitated by the new interfaces and inherent vacancies. The Ag@GaZn demonstrated the highest photocurrent response, about 20-and 2.27-folds that of the Ga and GaZn sam-ples, respectively. CO, CH4, and H2 formed as products for photo-reduction of CO2. Ag@GaZn catalyst exhibited the highest AQY of 0.121 % at 400 nm (31.2 W/m2). Also, Ag@GaZn generated 740 lmolg-1 of NH4+ ions, which was about 18-folds higher than Ga sample. In situ DRIFTS for isotopic-labelled 13CO2 and 15N2 reaffirmed the photo-activity of as-synthesized catalysts. Density functional theory pro-vided insight into the relative affinity of different planes of heterostructures towards H2O, CO2 and N2 molecules. The structure-photoactivity rationale behind the intriguing Ag@GaZn sample offers a funda-mental insight into the role of plasmonic Ag and design principle of heterostructure with improved pho-toactivity and stability.(c) 2022 Elsevier Inc. All rights reserved.
更多
查看译文
关键词
Hydrophilicity,CO2 reduction,Photocurrent response,DRIFTS density functional theory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要