Interplay of starch debranching enzyme and its inhibitor is mediated by Redox-Activated SPL transcription factor

COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL(2022)

引用 0|浏览14
暂无评分
摘要
The germination process is of central importance across the cultivated species involving several key enzymes for mobilization of stored food reserves. Pullulanase (PUL), a starch-debranching enzyme, plays an important role in mobilizing stored endosperm food reserves during germination. Pullulanase inhibi-tor (PULI) hinders PUL's activity through an unknown mechanism. Barley has one PUL and two PULI genes. During the time-dependent processes of seed germination, only PULI-1 expression shows an antag-onistic relationship with that of PUL. Our data have indicated that the expression of PULI-1 is modulated by SPL (Squamosa-promoter-binding Protein Like) transcription factors, known to be targeted by miR156. We show that the binding of recombinant HvSPL3 protein to the PULI-1 promoter occurs under reducing, but not under oxidizing conditions. Replacement of Cys residues with threonine in HvSPL3 abolishes the binding, indicating an essential role of the redox state in the expression of PULI. Our findings may have important implications for the industrial use of starch.(c) 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
更多
查看译文
关键词
Pullulanase,Pullulanase inhibitors,SPL3,Redox
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要