Theory of the magnetothermal instability in coronal plasma flows

Physics of Plasmas(2022)

引用 1|浏览0
暂无评分
摘要
The theory of the magnetothermal instability (MTI) [D. A. Tidman and R. A. Shanny, Phys. Fluids 17, 1207 (1974)] is revisited through the lens of the stability of uniform systems. The linear stability analysis includes flow advection and Nernst transport. The instability criteria derived distinguish between the convective and the absolute nature of the perturbation growth. It is proven that, in the region where the Nernst and plasma blowoff velocities cancel, the MTI can be absolute and wave-packet perturbations grow in situ. This instability is mediated by the internal feedback between the Biermann battery and Righi–Leduc terms. The analysis is extended to derive the dispersion relation for short-wavelength perturbations developing in nonuniform profiles with the application to coronal plasmas. It is found that the condition for MTI requires the net B-field convection velocity to be small at the isothermal sonic section, and the plasma conditions in this section govern the dynamics of the instability. Analysis of hydro-equivalent implosions suggests that unstable perturbations undergo more e-foldings of growth in larger-size targets.
更多
查看译文
关键词
magnetothermal instability,coronal plasma
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要