Sustainable Earthquake Resilience with the Versatile Shape Memory Alloy (SMA)-Based Superelasticity-Assisted Slider

SENSORS(2022)

引用 1|浏览3
暂无评分
摘要
Earthquakes threaten humanity globally in complex ways that mainly include various socioeconomic consequences of life and property losses. Resilience against seismic risks is of high importance in the modern world and needs to be sustainable. Sustainable earthquake resilience (SER) from the perspective of structural engineering means equipping the built environment with appropriate aseismic systems. Shape memory alloys (SMAs) are a class of advanced materials well suited for fulfilling the SER demand of the built environment. This article explores how this capability can be realized by the innovative SMA-based superelasticity-assisted slider (SSS), recently proposed for next-generation seismic protection of structures. The versatility of SSS is first discussed as a critical advantage for an effective SER. Alternative configurations and implementation styles of the system are presented, and other advantageous features of this high-tech isolation system (IS) are studied. Results of shaking table experiments, focused on investigating the expected usefulness of SSS for seismic protection in hospitals and conducted at the structural earthquake engineering laboratory of the University of Bonab, are then reported. SSS is compared with currently used ISs, and it is shown that SSS provides the required SER for the built environments and outperforms other ISs by benefitting from the pioneered utilization of SMAs in a novel approach.
更多
查看译文
关键词
shape memory alloy, resilience, earthquake, sustainability, aseismic isolation, structure, nonstructural systems, hospital, seismic protection, disaster prevention, shaking table
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要