A Spatial-Motion-Segmentation Algorithm by Fusing EDPA and Motion Compensation.

Xinghua Liu, Yunan Zhao,Lei Yang, Shuzhi Sam Ge

SENSORS(2022)

Cited 0|Views5
No score
Abstract
Motion segmentation is one of the fundamental steps for detection, tracking, and recognition, and it can separate moving objects from the background. In this paper, we propose a spatial-motion-segmentation algorithm by fusing the events-dimensionality-preprocessing algorithm (EDPA) and the volume of warped events (VWE). The EDPA consists of depth estimation, linear interpolation, and coordinate normalization to obtain an extra dimension (Z) of events. The VWE is conducted by accumulating the warped events (i.e., motion compensation), and the iterative-clustering algorithm is introduced to maximize the contrast (i.e., variance) in the VWE. We established our datasets by utilizing the event-camera simulator (ESIM), which can simulate high-frame-rate videos that are decomposed into frames to generate a large amount of reliable events data. Exterior and interior scenes were segmented in the first part of the experiments. We present the sparrow search algorithm-based gradient ascent (SSA-Gradient Ascent). The SSA-Gradient Ascent, gradient ascent, and particle swarm optimization (PSO) were evaluated in the second part. In Motion Flow 1, the SSA-Gradient Ascent was 0.402% higher than the basic variance value, and 52.941% faster than the basic convergence rate. In Motion Flow 2, the SSA-Gradient Ascent still performed better than the others. The experimental results validate the feasibility of the proposed algorithm.
More
Translated text
Key words
event camera, motion segmentation, motion compensation, depth estimation, motion flow
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined