Acyldepsipeptide Analogues: A Future Generation Antibiotics for Tuberculosis Treatment

PHARMACEUTICS(2022)

引用 3|浏览13
暂无评分
摘要
Acyldepsipeptides (ADEPs) are a new class of emerging antimicrobial peptides (AMPs), which are currently explored for treatment of pathogenic infections, including tuberculosis (TB). These cyclic hydrophobic peptides have a unique bacterial target to the conventional anti-TB drugs, and present a therapeutic window to overcome Mycobacterium Tuberculosis (M. tb) drug resistance. ADEPs exerts their antibacterial activity on M. tb strains through activation of the protein homeostatic regulatory protease, the caseinolytic protease (ClpP1P2). ClpP1P2 is normally regulated and activated by the ClpP-ATPases to degrade misfolded and toxic peptides and/or short proteins. ADEPs bind and dysregulate all the homeostatic capabilities of ClpP1P2 while inducing non-selective proteolysis. The uncontrolled proteolysis leads to M. tb cell death within the host. ADEPs analogues that have been tested possess cytotoxicity and poor pharmacokinetic and pharmacodynamic properties. However, these can be improved by drug design techniques. Moreover, the use of nanomaterial in conjunction with ADEPs would yield effective synergistic effect. This new mode of action has potential to combat and eradicate the extensive multi-drug resistance (MDR) problem that is currently faced by the public health pertaining bacterial infections, especially TB.
更多
查看译文
关键词
acyldepsipeptides, antimicrobial peptides, caseinolytic protease, Mycobacterium tuberculosis, antimicrobial, tuberculosis, multi-drug resistance bacteria, antibiotics, proteolytic core, nanomaterials
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要