Chrome Extension
WeChat Mini Program
Use on ChatGLM

Thermodynamics, Kinetics, and Mechanisms of the Co-Removal of Arsenate and Arsenite by Sepiolite-Supported Nanoscale Zero-Valent Iron in Aqueous Solution

INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH(2022)

Cited 4|Views8
No score
Abstract
In this study, a newly synthesized sepiolite-supported nanoscale zero-valent iron (S-nZVI) adsorbent was tested for the efficient removal of As(III) and As(V) in aqueous solution. Compared with ZVI nanoparticles, the As(III) and As(V) adsorption abilities of S-nZVI were substantially enhanced to 165.86 mg/g and 95.76 mg/g, respectively, owing to the good dispersion of nZVI on sepiolite. The results showed that the adsorption kinetics were well fitted with the pseudo-second-order model, and the adsorption isotherms were fitted with the Freundlich model, denoting a multilayer chemical adsorption process. The increase in the initial solution pH of the solution inhibited As(III) and As(V) adsorption, but a weaker influence on As(III) than As(V) adsorption was observed with increasing pH. Additionally, the presence of SO42- and NO3- ions had no pronounced effect on As(III) and As(V) removal, while PO43- and humic acid (HA) significantly restrained the As(III) and As(V) adsorption ability, and Mg2+/Ca2+ promoted the As(V) adsorption efficiency. Spectral analysis showed that As(III) and As(V) formed inner-sphere complexes on S-nZVI. As(III) oxidation and As(V) reduction occurred with the adsorption process on S-nZVI. Overall, the study demonstrated a potential adsorbent, S-nZVI, for the efficient removal of As(III) and As(V) from contaminated water.
More
Translated text
Key words
adsorption,sepiolite,nZVI,arsenate,arsenite
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined