Overcoming the Pitfalls of Next-Generation Sequencing-Based Molecular Diagnosis of Shwachman-Diamond Syndrome

JOURNAL OF MOLECULAR DIAGNOSTICS(2022)

引用 1|浏览8
暂无评分
摘要
Shwachman-Diamond syndrome (SDS) is the second most common cause of exocrine pancreatic insufficiency, and 90% of patients carry mutations in the SBDS gene, the most common being the c.183_184delinsCT and c.258 thorn 2T>C variants. However, precise detection of these most contributory variants by conventional short-read next-generation sequencing data analysis is limited because of the SBDS/SBDSP1 highly homologous sequences. In this study, an efficient approach was established to infer the haplotype of SBDS based on the expectation-maximization algorithm. The workflow was retrospectively applied to detect the two most common SBDS variants in a Chinese SDS high-risk cohort, and a systematic comparison of variant detection results was performed between the workflow and conventional next-generation sequencing analysis based on Sanger sequencing validation. Among the Chinese SDS high-risk cohort (n = 47) and their available parents (n = 64), the established workflow improved the diagnostic rate for these two variants by 27.7% (95% CI, 15.6%-42.6%) compared with conventional analysis. For overall variant detection, the established workflow achieved 100% (95% CI, 92.5%-100%) concordance with Sanger sequencing, whereas conventional analysis showed only 65.8% accuracy; these results included 25.2% with missed variant calls, 7.2% with diagnosed but inaccurate variant calls, and 1.8% with false-positive calls. With its favorable result in both SDS patient diagnosis and carrier detection performance, the provided workflow showed its potential in clinical application for SDS molecular diagnosis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要