Chrome Extension
WeChat Mini Program
Use on ChatGLM

What is the Real Origin of the Activity of Fe-N-C Electrocatalysts in the O2 Reduction Reaction? Critical Roles of Coordinating Pyrrolic N and Axially Adsorbing Species

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2022)

Cited 66|Views5
No score
Abstract
Fe-N-C electrocatalysts have emerged as promising substitutes for Pt-based catalysts for the oxygen reduction reaction (ORR). However, their real catalytic active site is still under debate. The underlying roles of different types of coordinating N including pyridinic and pyrrolic N in catalytic performance require thorough clarification. In addition, how to understand the pH-dependent activity of Fe-N-C catalysts is another urgent issue. Herein, we comprehensively studied 13 different N-coordinated FeNxC configurations and their corresponding ORR activity through simulations which mimic the realistic electrocatalytic environment on the basis of constant-potential implicit solvent models. We demonstrate that coordinating pyrrolic N contributes to a higher activity than pyridinic N, and pyrrolic FeN4C exhibits the highest activity in acidic media. Meanwhile, the in situ active site transformation to *O-FeN4C and *OH-FeN4C clarifies the origin of the higher activity of Fe-N-C in alkaline media. These findings can provide indispensable guidelines for rational design of better durable Fe-N-C catalysts.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined