Two-Dimensional Van Der Waals Topological Materials: Preparation, Properties, and Device Applications.

Small (Weinheim an der Bergstrasse, Germany)(2022)

引用 5|浏览5
暂无评分
摘要
Over the past decade, 2D van der Waals (vdW) topological materials (TMs), including topological insulators and topological semimetals, which combine atomically flat 2D layers and topologically nontrivial band structures, have attracted increasing attention in condensed-matter physics and materials science. These easily cleavable and integrated TMs provide the ideal platform for exploring topological physics in the 2D limit, where new physical phenomena may emerge, and represent a potential to control and investigate exotic properties and device applications in nanoscale topological phases. However, multifaced efforts are still necessary, which is the prerequisite for the practical application of 2D vdW TMs. Herein, this review focuses on the preparation, properties, and device applications of 2D vdW TMs. First, three common preparation strategies for 2D vdW TMs are summarized, including single crystal exfoliation, chemical vapor deposition, and molecular beam epitaxy. Second, the origin and regulation of various properties of 2D vdW TMs are introduced, involving electronic properties, transport properties, optoelectronic properties, thermoelectricity, ferroelectricity, and magnetism. Third, some device applications of 2D vdW TMs are presented, including field-effect transistors, memories, spintronic devices, and photodetectors. Finally, some significant challenges and opportunities for the practical application of 2D vdW TMs in 2D topological electronics are briefly addressed.
更多
查看译文
关键词
2D van der Waals topological materials,Dirac semimetals,Weyl semimetals,device applications,preparation,properties,topological insulators
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要