In silico modeling for the hepatic circulation and transport: From the liver organ to lobules

WIREs mechanisms of disease(2023)

Cited 0|Views12
No score
Abstract
The function of the liver depends critically on its blood supply. Numerous in silico models have been developed to study various aspects of the hepatic circulation, including not only the macro-hemodynamics at the organ level, but also the microcirculation at the lobular level. In addition, computational models of blood flow and bile flow have been used to study the transport, metabolism, and clearance of drugs in pharmacokinetic studies. These in silico models aim to provide insights into the liver organ function under both healthy and diseased states, and to assist quantitative analysis for surgical planning and postsurgery treatment. The purpose of this review is to provide an update on state-of-the-art in silico models of the hepatic circulation and transport processes. We introduce the numerical methods and the physiological background of these models. We also discuss multiscale frameworks that have been proposed for the liver, and their linkage with the large context of systems biology, systems pharmacology, and the Physiome project. This article is categorized under: Metabolic Diseases > Computational Models Metabolic Diseases > Biomedical Engineering Cardiovascular Diseases > Computational Models
More
Translated text
Key words
circulation,computational model,liver,liver lobule
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined