Field-Tunable Berezinskii-Kosterlitz-Thouless Correlations in a Heisenberg Magnet

Physical review letters(2023)

引用 1|浏览16
暂无评分
摘要
We report the manifestation of field-induced Berezinskii-Kosterlitz-Thouless (BKT) correlations in the weakly coupled spin-1=2 Heisenberg layers of the molecular-based bulk material [Cu(pz)2(2-HOpy)2](PF6)2. At zero field, a transition to long-range order occurs at 1.38 K, caused by a weak intrinsic easy-plane anisotropy and an interlayer exchange of J'=kB approximate to 1 mK. Because of the moderate intralayer exchange coupling of J=kB = 6.8 K, the application of laboratory magnetic fields induces a substantial XY anisotropy of the spin correlations. Crucially, this provides a significant BKT regime, as the tiny interlayer exchange J' only induces 3D correlations upon close approach to the BKT transition with its exponential growth in the spin-correlation length. We employ nuclear magnetic resonance measurements to probe the spin correlations that determine the critical temperatures of the BKT transition as well as that of the onset of long-range order. Further, we perform stochastic series expansion quantum Monte Carlo simulations based on the experimentally determined model parameters. Finite-size scaling of the in-plane spin stiffness yields excellent agreement of critical temperatures between theory and experiment, providing clear evidence that the nonmonotonic magnetic phase diagram of [Cu(pz)2(2-HOpy)2](PF6)2 is determined by the field-tuned XY anisotropy and the concomitant BKT physics.
更多
查看译文
关键词
correlations,magnet,field-tunable,berezinskii-kosterlitz-thouless
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要