Protective Effect of Shengmaiyin in Myocardial Hypertrophy-Induced Rats: A Genomic Analysis by 16S rDNA

EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE(2022)

引用 4|浏览7
暂无评分
摘要
Background. The gut-cardiac axis theory provides new insights into the complex mechanisms of cardiac hypertrophy and provides new therapeutic targets. Cardiac hypertrophy is a risk factor for heart failure. Shengmaiyin (SMY) is a traditional Chinese medicine formula with clear effects in the treatment and prevention of cardiac hypertrophy, but the mechanism by which it improves cardiac hypertrophy is still unclear. Therefore, this study aimed to investigate the protective effect and mechanism of SMY on isoproterenol (ISO)-induced myocardial hypertrophy in rats. Methods. First, various pharmacodynamic methods were used to evaluate the therapeutic effect of SMY on ISO-induced myocardial hypertrophy in rats. Then, 16S rDNA amplicon sequencing technology was used to study the effect of SMY on the intestinal flora of rats with myocardial hypertrophy. Finally, the mechanism underlying the effect of SMY on cardiac hypertrophy was predicted by bioinformatics network analysis and verified by Western blotting. Results. SMY increased ejection fraction (EF%) and left ventricular fractional shortening (FS%), ameliorated myocardial cell injury and fibrosis, regulated blood lipids and energy metabolism, and decreased cardiac hypertrophy marker gene expression. The gut microbiota of ISO-induced myocardial hypertrophy rats were significantly changed, while SMY effectively ameliorated the dysbiosis of the intestinal flora in rats with myocardial hypertrophy, especially Prevotella 9, Lactobacillus, and Clostridium. Mechanistic studies have shown that the anticardiac hypertrophy effect of SMY is related to the inhibition of the expression of HIF1 alpha/PPAR signalling pathway-related proteins. Conclusion. SMY significantly improves cardiac function, relieves myocardial cell fibrosis and necrosis, resists cardiac hypertrophy, improves blood lipid metabolism and energy metabolism, regulates intestinal microbial disturbance, and protects the heart.
更多
查看译文
关键词
shengmaiyin,hypertrophy-induced
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要