Chrome Extension
WeChat Mini Program
Use on ChatGLM

Quantum computational finance: martingale asset pricing for incomplete markets

arXiv (Cornell University)(2022)

Cited 0|Views20
No score
Abstract
A derivative is a financial security whose value is a function of underlying traded assets and market outcomes. Pricing a financial derivative involves setting up a market model, finding a martingale (``fair game") probability measure for the model from the given asset prices, and using that probability measure to price the derivative. When the number of underlying assets and/or the number of market outcomes in the model is large, pricing can be computationally demanding. We show that a variety of quantum techniques can be applied to the pricing problem in finance, with a particular focus on incomplete markets. We discuss three different methods that are distinct from previous works: they do not use the quantum algorithms for Monte Carlo estimation and they extract the martingale measure from market variables akin to bootstrapping, a common practice among financial institutions. The first two methods are based on a formulation of the pricing problem into a linear program and are using respectively the quantum zero-sum game algorithm and the quantum simplex algorithm as subroutines. For the last algorithm, we formalize a new market assumption milder than market completeness for which quantum linear systems solvers can be applied with the associated potential for large speedups. As a prototype use case, we conduct numerical experiments in the framework of the Black-Scholes-Merton model.
More
Translated text
Key words
martingale asset pricing,computational finance,quantum
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined