Pioneer activity distinguishes activating from non-activating pluripotency transcription factor binding sites

biorxiv(2022)

引用 3|浏览14
暂无评分
摘要
Genome-wide transcriptional activity involves the binding of many transcription factors to thousands of sites in the genome. Determining which sites are directly driving transcription remains a challenge. Here we use acute protein depletion of the pioneer transcription factors OCT4 and SOX2 to establish their functionality in maintaining chromatin accessibility. We show that thousands of accessible sites are lost within an hour of protein depletion, indicating rapid turnover of these sites in the absence of pioneer factors. To understand the relationship with transcription we performed nascent transcription analysis and found that open chromatin sites that are maintained by SOX2 are highly predictive of gene expression, in contrast to SOX2 binding sites that do not maintain accessibility. We use CRISPR-Cas9 genome editing in the Klf2 locus to functionally validate a predicted regulatory element. We conclude that the regulatory activity of SOX2 is exerted largely at sites where it maintains accessibility and that other binding sites are largely dispensable for gene regulation. ### Competing Interest Statement J.O.J.D. is a co-founder of Nucleome Therapeutics and provides consultancy to the company. The remaining authors declare no competing interests.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要