Synthetic yeast chromosome XI design enables extrachromosomal circular DNA formation on demand

biorxiv(2022)

引用 3|浏览35
暂无评分
摘要
We describe construction of the 660 kilobase synthetic yeast chromosome XI ( synXI ) and reveal how synthetic redesign of non-coding DNA elements impact the cell. To aid construction from synthesized 5 to 10 kilobase DNA fragments, we implemented CRISPR-based methods for synthetic crossovers in vivo and used these methods in an extensive process of bug discovery, redesign and chromosome repair, including for the precise removal of 200 kilobases of unexpected repeated sequence. In synXI , the underlying causes of several fitness defects were identified as modifications to non-coding DNA, including defects related to centromere function and mitochondrial activity that were subsequently corrected. As part of synthetic yeast chromosome design, loxPsym sequences for Cre-mediated recombination are inserted between most genes. Using the GAP1 locus from chromosome XI , we show here that targeted insertion of these sites can be used to create extrachromosomal circular DNA on demand, allowing direct study of the effects and propagation of these important molecules. Construction and characterization of synXI has uncovered effects of non-coding and extrachromosomal circular DNA, contributing to better understanding of these elements and informing future synthetic genome design. ### Competing Interest Statement Tom Ellis is a consultant to Replay Holdings, LLC and SAB member of Modern Synthesis, Inc. Jef Boeke is a Founder and Director of CDI Labs, Inc., a Founder of and consultant to Neochromosome, Inc, a Founder, SAB member of and consultant to ReOpen Diagnostics, LLC and serves or served on the Scientific Advisory Board of the following: Sangamo, Inc., Modern Meadow, Inc., Rome Therapeutics, Inc., Sample6, Inc., Tessera Therapeutics, Inc. and the Wyss Institute. The other authors declare no competing interests.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要