Design, Characterisation and Numerical Investigations of Additively Manufactured H10 Hybrid-Forging Dies with Conformal Cooling Channels

METALS(2022)

引用 1|浏览3
暂无评分
摘要
Internal die cooling during forging can reduce thermal loads, counteracting surface softening, plastic deformation and abrasive die wear. Additive manufacturing has great potential for producing complex geometries of the internal cooling channels. In this study, hybrid forging dies were developed combining conventional manufacturing processes and laser powder bed fusion (L-PBF) achieving conformal cooling channels. A characterisation of the used hot-work tool steel's AISI H10 powder material was carried out in order to determine suitable parameters for L-PBF processing and heat treatment parameters. Additionally, the mechanical properties of L-PBF-processed AISI H10 specimens were investigated. Furthermore, the influence of different internal cooling channels regarding a possible structural weakening of the die were analysed by means of a finite element method (FEM) applied to a hot-forging process. The numerical results indicated that the developed forging dies withstood the mechanical loads during a forging process. However, during the investigation a large dependency between the resulting stresses and the chosen parameters were observed. By choosing the best combination of parameters, a reduction of the equivalent stress by 1000 MPa can be achieved. Finally, a prototype of the hybrid-forging dies featuring the most promising cooling channel geometry was manufactured.
更多
查看译文
关键词
hybrid-forging die, laser powder bed fusion, die cooling, finite element method, die analysis, wear protection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要