谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Piecewise-uniform homogenization of heterogeneous composites using a spatial decomposition based on inelastic micromechanics

COMPOSITE STRUCTURES(2022)

引用 1|浏览13
暂无评分
摘要
The homogenized mechanical response of heterogeneous, elasto-plastic composite materials is investigated by the use of the transformation field analysis (TFA), a two-scale algorithm relying on microscopically piece-wise uniform fields of internal variables. Not optimized spatial subdomain decompositions of the microscopic domain cause over-stiff composite material responses modeled by the TFA since the main characteristics of the inelastic field interactions are not well-represented. To improve mechanical predictions using the TFA approach, emerging inelastic fields were used to achieve enhanced spatial decompositions. The numerical estimation of the interaction functions between the subdomains allows the use of this TFA approach for the numerical modeling of a wide variety of composite materials without the need of any pre-determined reference stiffnesses. The new TFA approach was tested for materials with isotropic and anisotropic microstructures and various material systems, with a particular emphasis on the complex case of perfectly plastic material phases. Comparisons are drawn between the TFA modeling using elasticity-based and inelasticity-based spatial divisions and to reference full-field computations. The achieved results prove that more accurate predictions for the mechanical responses of composite materials can be found when inelastic fields are considered as the foundation of the spatial division into subdomains.
更多
查看译文
关键词
Transformation field analysis, Homogenization, Heterogeneous materials, Reduced order modeling, Elasto-plasticity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要