Wafer-scale ultra-broadband perfect absorber based on ultrathin Al-SiO2 stack metasurfaces

OPTICS EXPRESS(2022)

引用 4|浏览9
暂无评分
摘要
Broadband absorbers with high absorption, ultrathin thickness, and lithography-free planar structure have a wide range of potential applications, such as clocking and solar energy harvesting. For plasmonic metal materials, achieving perfect ultra-broadband absorption remains a challenge owing to the intrinsically narrow bandwidth. In this study, wafer-scale Al-SiO2 stack metasurfaces were experimentally fabricated to realize perfect ultra-broadband absorption. The experimental results show that the absorption for Al-SiO2 stack metasurfaces can reach up to 98% for the wavelength range from the ultraviolet to the near-infrared (350-1400 nm). It was experimentally verified that the absorption performance of Ai-SiO2 stack metasurfaces is dependent on the layer number and is superior to that of other metal-based stack metasurfaces. This study will pave the way for development of plasmonic metal-based ultra-broadband absorbers as in low cost and high performance robust solar energy devices. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要