谷歌浏览器插件
订阅小程序
在清言上使用

Laser synthesis of amorphous CoSx nanospheres for efficient hydrogen evolution and nitrogen reduction reactions

JOURNAL OF MATERIALS CHEMISTRY A(2022)

引用 2|浏览12
暂无评分
摘要
Transition metal sulfides (TMSs) have been demonstrated to be excellent electrode materials for various applications of electrochemical energy conversion and storage. However, the synthesis of TMSs through conventional approaches commonly suffers from toxic or environmentally unfriendly reagents as well as time consuming procedures, high thermal power and energy loss. Herein, CoSx nanospheres with uniform distribution and strong adhesion on carbon fiber cloths (CoSx/CC-L) are synthesized via the confined laser temperature field under a H2S atmosphere under normal temperature and pressure conditions. It is demonstrated that the high pressure field induced by a laser yields amorphous CoSx containing numerous S vacancies, which could provide more active sites for enhancing the hydrogen evolution reaction (HER) and nitrogen reduction reaction (NRR). The as-prepared CoSx/CC-L exhibits a low overpotential of similar to 87 mV at 10 mA cm(-2) for the HER in 0.5 M H2SO4 aqueous electrolyte and maintains a stable catalytic performance for 15 h with a high current density of 650 mA cm(-2). In addition, a high ammonia (NH3) production rate (12.2 mu g h(-1) cm(cat)(-2)) and Faraday efficiency (10.1%) of CoSx/CC-L at -0.2 V vs. RHE in a neutral 0.05 M Na2SO4 electrolyte were obtained. The good proton activation and nitrogen adsorption abilities arising from the sulfur vacancies contribute to the active nitrogen association/hydrogenation process during the NRR. The laser synthesis provides an alternative process to produce efficient amorphous catalysts, which are expected to be promising HER and NRR electrocatalysts for energy conversion applications.
更多
查看译文
关键词
efficient hydrogen evolution,amorphous cos<sub><i>x</i></sub>,nanospheres,laser
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要