Engineering Thermoresponsive Emulsions with Branched Copolymer Surfactants

MACROMOLECULAR MATERIALS AND ENGINEERING(2022)

引用 5|浏览6
暂无评分
摘要
This study describes thermo-rheological properties of branched copolymer surfactants (BCSs) stabilizing oil-in-water emulsions to generate materials exhibiting temperature-dependent gelation with the ability to solubilize a broad range of molecules. Four poly(N-isopropylacrylamide-ran-poly(ethylene glycol) methacrylate) (poly(NIPAM-ran-PEGMA)) BCSs with varying molecular weight (M-n), 4.7; 7.0; 7.8 and 9.0 kg mol(-1), are investigated via oscillatory shear rheology, small angle neutron scattering (SANS), and neutron reflectivity (NR). Rheological thermoscans show that emulsions stabilized by the BCS with the lowest M-n (4.7 kg mol(-1)) are thermo-thinning, while with the other BCSs the emulsions display a thermo-thickening behavior. Emulsions stabilized with the BCS with M-n = 7.8 kg mol(-1) form gels within a precise temperature window depending on BCS concentration. Small angle neutron scattering data analysis suggests that the BCS is present in two forms in equilibrium, small aggregates dispersed in the bulk water and an adsorbed polymeric layer at the oil/water interface. Changes in dimensions of these structures with temperature correlate with the macroscopic thermo-thinning/thermo-thickening behavior observed. Neutron reflectivity is conducted at the oil/water interface to allow further elucidation of BCS behavior in these systems.
更多
查看译文
关键词
emulsion engineering, small angle neutron scattering, thermoreversible gels
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要