4D Printing of Multicomponent Shape-Memory Polymer Formulations

Muhammad Yasar Razzaq, Joamin Gonzalez-Gutierrez, Gregory Mertz, David Ruch, Daniel F. Schmidt, Stephan Westermann

APPLIED SCIENCES-BASEL(2022)

引用 15|浏览27
暂无评分
摘要
Four-dimensional (4D) printing technology, as a next-generation additive manufacturing method, enables printed objects to further change their shapes, functionalities, or properties upon exposure to external stimuli. The 4D printing of programmable and deformable materials such as thermo-responsive shape-memory polymers (trSMPs), which possess the ability to change shape by exposure to heat, has attracted particular interest in recent years. Three-dimensional objects based on SMPs have been proposed for various potential applications in different fields, including soft robotics, smart actuators, biomedical and electronics. To enable the manufacturing of complex multifunctional 3D objects, SMPs are often coupled with other functional polymers or fillers during or before the 3D printing process. This review highlights the 4D printing of state-of-the-art multi-component SMP formulations. Commonly used 4D printing technologies such as material extrusion techniques including fused filament fabrication (FFF) and direct ink writing (DIW), as well as vat photopolymerization techniques such as stereolithography (SLA), digital light processing (DLP), and multi-photon polymerization (MPP), are discussed. Different multicomponent SMP systems, their actuation methods, and potential applications of the 3D printed objects are reviewed. Finally, current challenges and prospects for 4D printing technology are summarized.
更多
查看译文
关键词
4D printing,additive manufacturing,layered structures,multi-material,polymer-based composites,polymer blends,interpenetrated networks,shape memory polymers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要