Proteomic Profile Analysis of Pulmonary Artery in a Rat Model Under Hypoxic Pulmonary Hypertension

CURRENT PROTEOMICS(2022)

引用 0|浏览17
暂无评分
摘要
Aim: Proteomic profile analysis of pulmonary artery in a rat model under hypoxic pulmonary hypertension. Background: Hypoxic pulmonary hypertension (HPH) is a pathological condition exemplified by a constant rise in pulmonary artery pressure in high-altitudes. Objective: To investigated the proteome profile and response mechanisms of SD rats under hypoxia over a period of four-weeks. Methods: Proteomic profile analysis of pulmonary artery in a rat model under hypoxic pulmonary hypertension. Results: With 3, 204 proteins identified, 49 were up-regulated while 46 were down-regulated. Upregulated genes included Prolargin, Protein S100-A6 and Transgelin-2, whereas Nascent polypeptide-associated complex and Elongator complex protein 1 were down-regulated. KEGG enriched pathways had purine metabolism, cancer and lipolysis regulation as significantly enriched in the hypoxic group. Conclusion: In conclusion, our findings submit a basis for downstream studies on tissue hypoxia mechanisms alongside the associated physiological conditions. Hypoxic pulmonary hypertension (HPH) is a pathological condition exemplified by a constant rise in pulmonary artery pressure in high altitudes. Herein, we investigated the proteome profile and response mechanisms of Sprague-Dawley (SD) rats under hypoxia over a period of four weeks. Unbiased iTRAQ-based quantitative proteomics was utilized in proteome profile analysis of a rat model exposed to HPH. With 3, 204 proteins identified, 49 were upregulated while 46 were downregulated. Upregulated genes included Prolargin, Protein, S100-A6 and Transgelin-2, whereas Nascent polypeptide-associated complex and Elongator complex protein 1 were downregulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enriched pathways had purine metabolism, cancer, and lipolysis regulation as significantly enriched in the hypoxic group. In conclusion, the findings from this study submit a basis for downstream studies on tissue hypoxia mechanisms alongside the associated physiological conditions.
更多
查看译文
关键词
Chronic pulmonary disorders, hypobaric hypoxia model, hypoxic pulmonary hypertension, proteomics, SD rat, physiological processes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要