Measuring sub-surface spatially varying thermal conductivity of silicon implanted with krypton

JOURNAL OF APPLIED PHYSICS(2022)

引用 5|浏览13
暂无评分
摘要
The thermal properties of semiconductors following exposure to ion irradiation are of great interest for the cooling of electronic devices; however, gradients in composition and structure due to irradiation often make the measurement difficult. Furthermore, the nature of spatial variations in thermal resistances due to spatially varying ion irradiation damage is not well understood. In this work, we develop an advancement in the analysis of time-domain thermoreflectance to account for spatially varying thermal conductivity in a material resulting from a spatial distribution of defects. We then use this method to measure the near-surface (<= 1 mu m) thermal conductivity of silicon wafers irradiated with Kr+ ions, which has an approximate Gaussian distribution centered 260 nm into the sample. Our numerical analysis presented here allows for the spatial gradient of thermal conductivity to be extracted via what is fundamentally a volumetric measurement technique. We validate our findings via transmission electron microscopy, which is able to confirm the spatial variation of the sub-surface silicon structure, and provide additional insight into the local structure resulting from the effects of ion bombardment. Thermal measurements found the ion stopping region to have a nearly 50 x reduction in thermal conductivity as compared to pristine silicon, while TEM showed the region was not fully amorphized. Our results suggest this drastic reduction in silicon thermal conductivity is primarily driven by structural defects in crystalline regions along with boundary scattering between amorphous and crystalline regions, with a negligible contribution being due to implanted krypton ions themselves. (C) 2022 Author(s)
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要